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Heterotic compactifications

e Standard model gauge group is
SU@B)xSU(2)xU(l)y C SU(5) c SU(5)xSU(5) C Es,

so centraliser is U(1)y xSU(5).
e But U(1)y flux implies a massive gauge boson.

e Solution: Discrete Wilson lines

—> non-trivial fundamental group.
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Moduli stabilisation

e Fewer moduli may make stabilisation easier/more tractable.

e E.g. Anderson et. al. “Stabilizing All Geometric Moduli in Heterotic
Calabi-Yau Vacua”, arXiv:1102.0011:

e Uses h'''(X) — 1 line bundles.
e Only possible for A"!(X) < 10.

o Conditions on h%? less clear.
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Hodge numbers and fundamental group

e 71(X) # 1 implies torsion in (co)homology. Mirror symmetry

preserves torsion, although not m; itself.

N Torsion-free (co)homology.

= e Torsion in (co)homology.

B = At least one manifold with each
property.

. Other.

T EY EY o ®

X:2(h1,1_nh2,1)m

e Red dots with x < 0 have m # 1, others are mirrors.
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Calabi-Yau covering spaces

e Define ‘Calabi-Yau’ (CY) as Kéhler with ¢; = 0 (over Z). Notation:

e w is the Kéhler form — a closed positive (1, 1)-form.

Positivity: / w™ >0 VYV complex sub-manifolds S
s

e () is the nowhere-zero holomorphic (3, 0)-form.

e Every manifold has a universal cover. Suppose X = X /G is
Calabi-Yau, where G acts freely.
Then so is )~(, since if 7 : X — X is the covering map,
e d(m*w) = 7" (dw) = 0, and 7*w also positive.

e 7*Q is a nowhere-zero holomorphic (3,0)-form (check pointwise).
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Calabi-Yau quotient spaces

e What about the converse? Let G act freely, holomorphically on X.
Is X = X /G Calabi-Yau?

e Choose any Kéhler form w on X. Then

W = Zg*w

geaG

is a G-invariant Kéhler form, so descends to a Kéhler form on X.
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Calabi-Yau quotient spaces

e Q is unique (up to scale) element of H>°(X). Since G acts without
fixed points, an Atiyah-Bott fixed point formula reduces to

3
Z qTr g ‘H3q) g*’Hs,o)_Tr(g*|H3,3)

q=0
for any g € G\ e.
e But H*3(X) is spanned by (wG)s, which is invariant, so
Tr (g*’H&S) =1
o We conclude that ¢g*Q = €, so Q descends to a nowhere-zero

holomorphic (3,0)-form on X.
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Calabi-Yau quotient spaces

¢ Conclusion: If a group G acts holomorphically without
fixed points on a Calabi-Yau threefold X, then
X = X /G is automatically Calabi-Yau.

e Note: Argument holds in all odd dimensions, and also shows that in

even dimensions, all Calabi-Yau manifolds are simply connected.
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Example: Quotients of CICY’s

o All free quotients of complete intersection CY’s in products of

projective spaces are classified: Braun, arXiv:1003.3235.
® One finds a linear group action on the ambient space, then checks:

e The symmetric CY sub-manifolds are generically smooth.

e They do not intersect the fixed-point set in the ambient space.

e Plenty of details and examples in Candelas, Davies arXiv:0809.4681.
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Example: New three-generation manifolds

X84 a CICY, but also hypersurface in dPgxdPs.

Fan for dPs:

Hexagonal! So dPgxdPg has symmetry (DgXDg) X Za.
Two order-12 subgroups act freely on X®%: Zio | ZsxZ4 .
The quotients have (h'*, h*') = (1,4) and thus x = —6, giving three

generations by standard embedding.
Many details in Braun, Candelas, Davies, arXiv:0910.5464.

Symmetry breaking in my thesis: http://people.maths.ox.ac.uk/daviesr
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The conifold

e Simplest singularity of a complex threefold:

Y1ya — y2y3 =0 .

(Generally, a co-dimension k space given by f1 = ... = fr = 0 is singular

where df1 A ... Adfr =0 also holds.)

e Its topology is a cone over S°xS2.

See e.g. Candelas and de la Ossa, Nucl.Phys. B342 (1990) 246-268

o This singularity can be deformed or resolved.
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Conifold transitions locally

Deformation Conifold Resolution

Geometry
*a\hj
. t 0
Equation | y1ys —y2ys =€ | y1ya —y2y3 =0 (yl yz) ( 0) = ( )
Y3 ya) \t1 0

e Deformation replaces singular point with an S®, resolution with an S2.
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Conifold transitions globally

e Suppose a CY manifold X deforms to X, with conifold singularities.

e In resolving Xy, must be careful about Kéahler condition:

e E.g. Suppose A = S3 vanishes and is replaced by C = S2.
e Dual cycle B with BN A = 1. Then after resolution, C' = 0B.

e Then a Kéhler form w must satisfy

O:/dw :/ w :/w>0. Impossible!
B oB e}

e Condition: Non-trivial homology relations between vanishing S®’s.
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Conifold transitions globally

e Useful fact: for algebraic manifolds, K&hler < Projective.
e Example: X101 s X286

e P* with homogeneous coordinates zo, ..., z4. Special quintics:
Z09o(z) —2z191(2) = 0.

e All contain {2 = 21 = 0} = P%. Since go, g1 are quartics, this
family is singular at 4x4 = 16 points, all lying in this P?.

e Introduce a P!, and consider in P! xP*

Z1 —Z0 to _ 0
go —9 t1 0
e This construction is called “blowing up” along the P?.

The blow-up of a projective variety is always projective.

Rhys Davies New CY3s 18/31



Conifold transitions and 7

e Suppose we have X /G =: X ~» Y. What is 7, (Y)?

71 is topological, so use ‘surgery’ picture to calculate:
e Shrinking S%’s on X; delete a n’hd of each, with boundary S®xS2.
e Now glue in a ‘fat’ 2, with boundary S%xS2, in place of each S3.
o S% 53xS? S? all simply-connected, so we get* m1(Y) = 71 (X).
e Conclusion: Conifold transitions do not change 7.

e So find new manifolds with 7; # 1 by transitions from old ones!

*This follows from a simple application of van Kampen’s theorem.
See e.g. Hatcher, “Algebraic Topology”.
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Example: The Z3 web
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e Taken from Candelas and Constantin, arXiv:1010.1878.
Many of these described in Candelas and Davies, arXiv:0809.4681.
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Example: X 14 ~s X?22

e Recall X' = X% /G where |G| = 12. We can embed X% as

P21 1. 1 0 O
A _ P2l0 0 1 1 1
P21 1 1 0 O
P20 0 1 1 1

Take homogeneous coordinates o ; ,a =1,2,3,4 ,5=0,1,2.

G = Zs3 % Z4 generated by
. ) (=1)%j . . ) )
g3 @ Taj —( Ta,j s, g4 ' Ta,j =7 Tatl,

with ¢ = exp(27i/3).

e All the action is in the invariant degree-four polynomial r.
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Example: X 14 ~s X?22

In the same way as for the quintic, special choices of r ‘factorise’:
r = fo(z1,%3)g0(22,24) — f1(21,73)91 (22, 1)

This gives 36 conifolds on X®%* and 3 on the quotient.
Resolve by introducing a P* with coordinates to, t1,

tofi —tifo =togo —tig1 =0.

The configuration matrix is now

Plro 0 1 1 0 O
P20 01 0 1 1
X —p2|1 1 0 1 0 0
P2j0 0 1 0 1 1
P21 1 0 1 0 O
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Example: X 14 ~s X?22

tof1 —tifo =togo —tig1 =0
e Can deduce group action on %g,t; from that on other coordinates.

Plro 0 1 1 0 O

P20 0 1 0 1 1 Pl{1 1
x99 —p2|3 1 0 1 0 of 2pP?2|0 3

P20 0 1 0 1 1 P2(3 0

P21 1 0 1 0 O

e In the second form, X'%'9 was known to admit free quotients by
ZQ, Zg, ZQXZQ, Z4, Z5, ZG, Z4><ZQ, Zg XZg .

(See Bouchard and Donagi, arXiv:0704.3096)

e Pursuing conifold transitions has revealed two more:

le, Zg X Z4 .
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Aw Dad, not the quintic again! I want a G.I. Joe!

Zs naturally acts on P

(20, 21, 22, 23, 24) — (Zo,C217<222,<3237<4Z4) , ¢ =exp(2mi/5)
e An invariant quintic hypersurface is given by

f = E Aijhim zi 2j 2k 21 2m = 0.

i+j+k+14+m=0
mod 5

Fixed points when only one z; non-zero. CY misses these if

e Symmetric hypersurfaces generically smooth, so get smooth quotients:

X2l X1,101/ZS
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The Zs-hyperconifold

e Expand f in the neighbourhood of fixed point (1,0,0,0,0).

With local coordinates y; = z;/20, we get (after possible rescaling)
[ = Aooooo +Y1Yas — Y2 ys + ...

e Fixed point when Aggooo — 0. Then fixed point is a conifold!

e So quotient develops ‘hyperconifold” — a quotient of the conifold.

Figure: The toric diagram of the conifold and Zs-hyperconifold.
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Hyperconifolds generally

e In arXiv:0911.0708 I show this is a general phenomenon:

Let Zn act freely on a generic member of a smooth family X.

Then if a fixed point develops, it is a conifold in X.

Thus the smooth family X = )Z'/ZN develops a hyperconifold.

e Constrast with case of generic fixed points, which give orbifolds.

e Known cases: N =2,3,4,5,6,8,10,12
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Hyperconifold transitions

Can we, like for some conifolds, resolve to find new manifolds?
Yes, seemingly always! For Zss case, blowing up singular point gives a

Calabi-Yau with only orbifold singularities.

Blow up
—

Zs:

Since we let a fixed point develop, such a transition changes ;.

The Hodge numbers also change; for a Zn-hyperconifold transition,

S(hVY BNy = (N —1,-1)
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Example

e Remaining cases, Z3 and Zs, shown by example to occur in

Davies, arXiv:1102.1428.

IEDQ
o Family X328 = p2 |:§:| admits free Zs and Zs xZs actions.

Get Zs-hyperconifold transitions:

o Globally, we get X229 ~» X%28 and m; changes from Zs3 to 1.
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Chains of transitions

e The ambient space has nine fixed points.

Treating them independently gives a chain of nine transitions:
X229, 428 x627 | x20,20

At each step, §(h"', h®') = (2, —1). Only X*?° has m # 1.

e Can also start with X*'' = X283 /(Z3x7Z3), and get
21, A0 | 6.9 | 88

Last three have m1 = Zs.

e No systematic study done — possibly many new manifolds.
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Conclusion

e Calabi-Yau’s with few moduli and/or m1 # 1 are particularly

interesting.
e In recent years, many new such manifolds from free quotients.

e Topological transitions generate interesting new manifolds from old:

e Conifold transitions do not change .

e Hyperconifold transitions sometimes do.
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